
GAtor Genetic Algorithm for
Molecular Crystal Structure

Prediction

A User’s Manual

Marom Research Group

Department of Physics and
Department of Materials Science and Engineering

Carnegie Mellon University, Pittsburgh, PA 15213, USA

April 3, 2018

Contents

1 Basic Installation and Tutorial 1
1.1 Introduction . 1
1.2 Installation Requirements for GAtor . 1
1.3 Structure of the Code . 2
1.4 Running GAtor . 2
1.5 Basic Tutorial . 2

1.5.1 The ui.conf file . 2
1.5.2 Basic ui.conf file settings . 2
1.5.3 Filling the initial pool . 7
1.5.4 Running the GA . 7
1.5.5 Individual and Combined Replica Outputs 7
1.5.6 GAtor time log . 8
1.5.7 Structures directory . 8
1.5.8 Temp Directories for FHI-aims evaluations 8
1.5.9 Energy Hierarchy . 9
1.5.10 Duplicates . 9
1.5.11 Finishing the GA . 9
1.5.12 Reseting the Calculation Folder . 9

2 Full Configuration File Parameters 10

3 Running GAtor in Parallel on Supercomputing Resources 30
3.1 Running GAtor at ALCF . 30

3.1.1 Mira . 30
3.1.2 Theta . 31

3.2 Running GAtor at NERSC . 32
3.2.1 Edison . 32

Chapter 1

Basic Installation and Tutorial
1.1 Introduction

Welcome to the GAtor genetic algorithm for molecular crystal structure prediction. GAtor
uses principles from evolutionary theory such as survival of the fittest, crossover, and muta-
tion that are implemented as operators acting on individual molecules and/or lattice vectors
of the fittest crystal structures selected for mating. Energy evaluations and structural re-
laxations are performed using dispersion-inclusive density functional theory (DFT). For this
purpose, GAtor currently interfaces with the all-electron numerical atom-centered orbital
DFT code FHI-aims.

1.2 Installation Requirements for GAtor

GAtor is written in Python and interfaces with the all-electron electronic structure theory
code FHI-aims. GAtor can be downloaded from http://software.noamarom.com. To run
GAtor the user will need to install:

• Python 2.7 (http://www.python.org).

• NumPy version ≥ 1.9 (http://www.numpy.org).

• Pymatgen version ≥ 4.4.0 (http://www.pymatgen.org).

• Sci-kit learn version ≥ 0.17.1 (http://scikit-learn.org).

• A build of FHI-aims (https://aimsclub.fhi-berlin.mpg.de), preferably compiled
with MPI and scalapack.

The python modules can be installed using, for example, pip. Check that python and the
dependent packages can be successfully imported:
$ python
» import numpy
» import sklearn
» import pymatgen

1

http://www.python.org
http://www.numpy.org
http://www.pymatgen.org
http://scikit-learn.org
https://aimsclub.fhi-berlin.mpg.de

CHAPTER 1. BASIC INSTALLATION AND TUTORIAL 2

1.3 Structure of the Code

GAtor contains the main directories /src and /tutorial . The /src folder contains the
master script GAtor_master.py along with core modules of the GA such as /selection

and /crossover . The /tutorial folder provides an example GA run (see Section 1.4).

1.4 Running GAtor

To run GAtor, one runs the master script and inputs a user-defined configuration file
ui.conf via

$ python ../src/GAtor_master.py ui.conf

For an explanation of the ui.conf file see Section 1.5.1.

1.5 Basic Tutorial

This section takes the user through the example calculation provided in /tutorial . This
folder contains a ui.conf file, a sample initial pool, and sample FHI-aims control files
control.in.SPE.tier_1.dummy and control.in.FULL.tier_1.dummy . The first con-
trol file is used just for single point energy evaluations, while the second is used for local
optimization1. The energy cutoffs corresponding to each control file are detailed in Section
1.5.2.

1.5.1 The ui.conf file

The ui.conf is the only file the user needs to modify in order to use GAtor. It can be
named anything as long as it ends with “.conf". A simple example for the molecule 3-4-
cyclobutylfuran can be found in /gator/tutorial/ui.conf . The conf file contains the
parameters that control all aspects of GAtor including parallelization options, paths to the
user-input initial pool, options for interfacing with FHI-aims, and tuning parameters for
GA tasks such as mutation probability and duplicate-check tolerances. For an explanation
of the simple keywords shown in /gator/example_calc/ui.conf see Section 1.5.5. For a
full catalog of all the possible keywords that can go into this file, see Chapter 2.

1.5.2 Basic ui.conf file settings

This section details the parameters you will see in the basic configuration file ui.conf .
All parameters are grouped into main sections. This conf file runs GAtor for the molecule
3-4-cyclobutylfuran.

1To accelerate the DFT calculations for tutorial purposes, limitations are placed on the number self-
consistent iterations and max relaxation steps in the control files. These control files should not be used for
production purposes, as the calculations will not be fully converged.

CHAPTER 1. BASIC INSTALLATION AND TUTORIAL 3

[GAtor_master]

The GAtor_master section controls the main procedures of initial pool filling and
running the GA.

• fill_initial_pool = TRUE

– Fills the user-defined initial pool into the common pool of structures before
running the rest of the GA tasks.

• run_ga = TRUE

– Executes of the main GA procedure

[modules]

The modules section details the names of the individual GA modules used in the sub-
folders of /src/. Some of these modules (e.g. selection_module=tournament_selection)
may be set to alternative options (e.g. selection_module=roulette_selection). For
more information on alternative modules see Section 2.

[initial_pool]

• user_structures_dir = initial_pool

– Path to the pre-prepared initial pool, as generated by Genarris. Structures are
in a JSON format.

• stored_energy_name = energy_PBE_TS_tier1

– Stored energy name in initial pool json files (if other than "energy"). For produc-
tion calculations, this should be at the same level of theory as the last control
file listed in control_in_filelist .

[run_settings]

This section controls general GA run settings.

• num_molecules = 4

– This is the number of molecules in the unit cell to be run (must match number
of molecules per unit cell in the initial pool). This must be specified by the user.

• end_GA_structures_added = 5

– Setting which stops GAtor after a certain amount of children (in this case 5) have
been added to the common pool. For production calculations this may be set to
approximately 250-400 structures. For more options for stopping/converging the
GA refer to Section 2.

CHAPTER 1. BASIC INSTALLATION AND TUTORIAL 4

• output_all_geometries = TRUE

– Prints the FHI-aims-style geometries of parents, children, and mutations to the
main output GAtor.out . This setting is set to TRUE for easy visualization
of the structures using Jmol (copy/paste) but may be uncommented for a less
verbose output.

• #skip_energy_evaluations = TRUE

– This parameter is uncommented by default, but may be used to skip FHI-aims
energy evaluations of the generated structures (giving them an energy of 0 eV).
This can be used to verify the structure selection and generation works (e.g. on
a laptop) without having to run FHI-aims.

[parallel_settings]

• parallelization_method = subprocess

– The parallelization setting of the GAtor replica(s) being run (not for FHI-aims).
Subprocessing uses Python’s Subprocess module (to run FHI-aims) and can be
used on a laptop, or on a cluster (where the Python subprocess will run on the
job scheduler nodes). See Chapter 2 for alternative options.

• number_of_replicas = 1

– Number of GAtor replicas being run by user.

• processes_per_replica = 1

– Number of parallel Python processes used per replica. This sets the number of
python processes used for parallel GA tasks such as child generation. This makes
the child generation procedure faster but should be set with an awareness of the
number of processes available on the given machine being used.

• aims_processes_per_replica = 64

– Number of parallel processes used per replica to run FHI-aims for a given replica.
For example, this is set to 64 if one is running 1 replica on 1 node of a cluster
with 64 processes (e.g. Theta at ALCF).

[FHI-aims]

• execute_command = mpirun

– Command to run the FHI-aims binary. Since we will be using the scalable version
of aims the command is mpirun .

• path_to_aims_executable = aims.mpi.x

CHAPTER 1. BASIC INSTALLATION AND TUTORIAL 5

– Path to FHI-aims executable being used for energy evaluations and/or structural
relaxations.

• control_in_directory = control

– Name of the directory in the main calculations folder which can contain multiple
FHI-aims control.in files (which can be named arbitrarily).

• control_in_filelist = control.in.SPE.tier_1.dummy control.in.FULL.tier_1.dummy

– Name of control file(s) in control directory being used within GAtor. The GA
evaluates the control files in order, and the user can set energy cutoffs for each
control file (see below). For the tutorial a dummy single-point energy and full
relaxation control file are included for demonstrative purposes (i.e. for fast DFT
evaluations that are not fully converged). DO NOT use these control files for
production calculations.

• store_energy_names = energy_SPE_tier1 energy_relaxed_tier1

– Name of energy names stored for each structure according to the control file(s) in
control_in_filelist . If these aren’t specified only the energy corresponding
to the last control file in control_in_filelist is stored, and it is stored as
“energy”.

• relative_energy_thresholds = 10 10

– Relative energy cutoffs (in eV) from the current global minimum structure for
each control file specified in control_in_filelist . If a structure has a relative
energy greater than the minimum energy structure plus this cutoff, it is immedi-
ately rejected. For tutorial purposes these are set to relatively large cutoffs. For
more energy cutoff options see Section 2.

• save_failed_calc = TRUE

– If uncommented, saves aims calculations if they fail for some reason in /tmp

• save_successful_calc = TRUE

– If uncommented, saves full aims calculations data for successful GA structures.
Should be commented out if space is an issue.

[selection]

This section controls parameters related to the specific selection_module chosen.

• tournament_size = 3

– For tournament selection, this controls the tournament size.

CHAPTER 1. BASIC INSTALLATION AND TUTORIAL 6

[crossover]

This section controls parameters related to the specific crossover_module chosen.

• crossover_probability = 0.5

– This parameter controls the probability of crossover for a child structure. If set
to 0.5 the child has a 50% chance of undergoing crossover, and a 50% chance of
undergoing mutation. A separate parameter is not needed for mutation.

[mutation]

This section controls parameters related to the specific mutation_module chosen.

• stand_dev_trans = 0.5

– Standard deviation (in Angstrom) of the random translation mutations applied.

• stand_dev_rot = 30

– Standard deviation (in degrees) of the random rotation mutations applied.

• stand_dev_strain = 0.3

– Standard deviation of the random strain mutations applied.

[cell_check_settings]

This section controls parameters related to the geometric constraints of generated
crystal structures. Structures are rejected if they don’t pass these constraints.

• target_volume = 473

– The mean target_volume for generated structures

• volume_upper_ratio = 1.4

– The upper ratio of target_volume accepted for generated structures.

• volume_lower_ratio = .6

– The lower ratio of target_volume accepted for generated structures.

CHAPTER 1. BASIC INSTALLATION AND TUTORIAL 7

1.5.3 Filling the initial pool

An initial pool of structures, prepared by the user using the Genarris molecular crystal
generation package is required to run GAtor. For more information on generating this
initial pool see the Genarris user’s manual. The path to this initial pool of structures is
set in the ui.conf file in [initial pool]/user_structures_dir . To start, comment out
run_GA = TRUE and comment fill_initial_pool = TRUE . This will just fill the initial
pool without running the GA. Then run the master script

$ python ../src/GAtor_master.py ui.conf

If the initial pool has properly been filled, one should see a nonempty file in /tmp/num_IP_structs.dat
that contains the number of nonduplicate initial pool structures.

1.5.4 Running the GA

One the initial pool has been filled you may run the GA by uncommenting run_GA = TRUE .
One could run the code in-shell (not recommended) by running again

python ../src/GAtor_master.py ui.conf &

Putting the & at the end of the script allows the code to run in the background and frees
up your terminal. However, this may take quite a while to finish as FHI-aims calculations
are being performed. Therefore, it is highly recommended to submit this command to a
cluster. An example submit_to_cluster.sh is provided in the tutorial folder. Make sure
the number of [parallelization_settings]/ aims_processes_per_replica is set in
accordance with the number of processes allocated on the cluster.
One GAtor replica is now running! The next step is to look at the different output files
being produced.

1.5.5 Individual and Combined Replica Outputs

The output an individual replica is stored in, e.g.,

./tmp/replica_out/fa2f201fe6.out

The label is generated randomly, so yours won’t be labelled “fa2f201fe6" but some other
random hexidecimal. This replica output file records information from the genetic algorithm
tasks from each iteration of an individual replica and is reset when either a structure is re-
jected or successfully accepted. This file includes details from selection, crossover, mutation,
comparison, and FHI-aims evaluation for the current structure for the given replica.
The combined output from all successful iterations of all running replicas is stored in.

./GAtor.out

CHAPTER 1. BASIC INSTALLATION AND TUTORIAL 8

This combined output file is written to every time any replica starts and finishes an it-
eration. Feel free to inspect this file as GAtor runs. While this output details various
procedures being performed by the GA, it is mostly just for the user’s information. Since
in the example ui.conf it was elected to output all FHI-aims geometries to the replica
outputs, you may choose to visualize the geometries from the most recent parents, chil-
dren, and mutations by copy/pasting their FHI-aims geometries from the replica output
file into Jmol. The main data (structures) being produced from the GA run are located in
./structures/C:24_H:24_O:4/0 (See Section 1.5.8)

1.5.6 GAtor time log

A time log that mainly entails information on the execution of FHI-aims energy evaluations
for all replicas is stored in,

./GAtor.log

The user can refer to this file for inquiring when the latest FHI-aims evaluation for their
replica has started and stopped as well as if the jobs have failed(hopefully not...).

1.5.7 Structures directory

The database of the entire common pool of the genetic algorithm is located in the the di-
rectory, e.g.,

./structures/C:24_H:24_O:4/0

Each subfolder in this directory corresponds to one structure in the pool, and they are
named according to random-indices (if they are an initial pool structure their original name
is used). FHI-aims geometries as well as JSON files (which store the structure’s geometry
and properties) are stored in these files. Feel free to inspect any of these directories.

1.5.8 Temp Directories for FHI-aims evaluations

The currently-running FHI-aims calculation folders (when a new structure has been suc-
cessfully generated) are located in a directory named after the replica, e.g.

./tmp/fa2f201fe6

If you change into this directory you will find the control.in, geometry.in, and aims.out files
for the currently-running FHI-aims calculation for your replica, as well as a JSON file which
includes properties of the currently running structure. The user can inspect aims.out if they
wish to know exactly where an FHI-aims evaluation is at.

CHAPTER 1. BASIC INSTALLATION AND TUTORIAL 9

1.5.9 Energy Hierarchy

An energy hierachy, which ranks structures from the database by their energy is updated in,

./tmp/energy_hierarchy_C:24_H:24_O:4.dat

If you inspect this file, you will see it includes key information from each structure in the
collection including their energy ranking, the size of the pool when they were added (initial
pool structures have a value of 0, and GA structures indicate the size of the collection when
the structure was added), which replica they came from, their structure index, their energy,
their unit cell volume and parameters, and their spacegroup. Additionally, for GA-added
structures, information about the mutation procedures performed to generate the structure,
as well as the indices of the structure’s parents, are included. This file is often the simplest
one to look at to see if new structures have been added, and where they fall energy-wise in
the collection.

1.5.10 Duplicates

An essential part of any genetic algorithm is the identification of duplicate structures as
they are inevitably generated in random crossover processes. The database of structures
that are deemed as duplicates (and not included in the common pool) are found in,

./structures/S:6_C:16_N:8/duplicates

Within the GA, GAtor uses pymatgen’s StructureMatcher class to identify duplicate
structures within a user-defined energy window. For more information on changing these
duplicate tolerances from their default values, see the user manual.

1.5.11 Finishing the GA

GAtor will stop when the time limit on the computing cluster has expired, or when the
convergence criteria is reached. In the tutorial we elected for the GA to stop when 5
structures have been added to the common population (in addition to the initial pool
structures). This was set via end_GA_structures_added = 5

1.5.12 Reseting the Calculation Folder

To reset the current calculation folder (remove all generated structures and start over) one
can just remove the generated ./tmp and ./structures directories as well as any GAtor
outputs. A script which does this is included as ./reset_calc.sh . This can be used also
if errors happen (due to user mistakes) and one just wants to start fresh.

Chapter 2

Full Configuration File Parameters

The configuration file ui.conf (or [user_defined_label].conf) is the only file the user has to
modify to control all parameters used in GAtor. Listed below are all the possible parameters
for ui.conf, listed under their respective section headings.

[GAtor_master]

The GAtor_master section controls the main procedures of initial pool filling and
running the GA.

• fill_initial_pool = (optional; Boolean)

– If present, fills the user-defined initial pool into the common pool of structures
before running the GA. The user should omit this keyword if the pool has already
been filled and there are just desiring adding another replica to write to the
common pool.

• run_ga = (optional; Boolean)

– If present, enables execution of the main GA procedure. See the parallel_settings
section for details on spawning additional replicas of GAtor.

[modules]

This section details the names of the individual GA modules used in the subfolders
of /src/. Some of these modules (e.g. selection_module=tournament_selection)
may be set to alternative options (e.g. selection_module=roulette_selection).
If the user does not specify any or all of the modules the defaults are used.

• initial_pool_module = IP_filling

– The default initial pool filling module. Currently, this is the only module avail-
able. See section [initial_pool] for other keywords used with this module.

10

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 11

• optimization_module = FHI_aims

– The default optimization module that sets up, runs, and extracts data from FHI-
aims when used for energy evaluations and/or local optimizations. See section
[FHI-aims] for other keywords used with this module. tournament_selection

• comparison_module = structure_comparison

– The default comparison module that uses Pymatgen’s StructureMatcher to com-
pare structures to the common pool before and after local optimization.

• selection_module = roulette_selection or tournament_selection

– roulette_selection is the default selection module that uses roulette-wheel
selection. The other option is tournament_selection that selects the winner
and runner-up of a tournament size of [selection]/tournament_size . See
section [selection] for other keywords that can be used with this module.

• clustering_module = cluster (optional; omit if not used)

– when the clustering module is present along with [clustering]/cluster_pool=TRUE

then a cluster-based fitness scheme is performed. See section [clustering] for
other keywords used within this module.

• mutation_module = standard_mutation

– Currently standard_mutation is the default mutation module. See section
[mutation] for a list of keywords that can be used with this module.

• crossover_module = standard_crossover or symmetric_crossover

– standard_crossover is the default crossover module. symmetric_crossover
may also be used. For a list of keywords used in conjunction with these modules
see section [crossover] .

[run_settings]

This section sets main parameters and run settings used across different modules of
the GA. Here one can specify, e.g. how many molecules are in the unit cell, how to
stop the GA, and the verbosity of the outputs.

• num_molecules = (required; integer)

– Number of molecules per unit cell for the current search (must match number of
molecules in initial pool structures).

• orthogonalize_unit_cell = (optional Boolean; default TRUE)

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 12

– If TRUE will perform Niggli reduction on all structures (TRUE by default, so
may be omitted). Else set to FALSE to prevent standardization of the crystal
lattices (not recommended).

• end_GA_structures_added = (optional; integer)

– A simple way to end the GA by stopping after this many structures have been
added by the GA.

• end_GA_structures_total = (optional; integer)

– A simple way to end the GA by stopping after this many structures total struc-
tures are in the common pool. This includes the structures added by the GA
and the structures in the initial pool.

• followed_top_structures = (optional, must be used with max_iterations_no_change ;
integer)

– Track the top number of structures (as ranked by their energy) to see if they
have changed in max_iterations_no_change . This is a way of determining
convergence.

• max_iterations_no_change = (optional, must be used with followed_top_structures;
integer)

– If followed_top_structures hasn’t changed in max_iterations_no_change ,
then stop the GA.

• verbose= (optional Boolean; default TRUE))

– If TRUE , include for detailed information printed to outputs.

• output_all_geometries = (optional; Boolean, set to TRUE or omit)

– Set to TRUE to enable replica output of FHI-aims style geometry whenever a
new trial structure is generated or altered.

• failed_generation_attempts = (optional; default = 100)

– Number of attempts allowed for the structure generation scheme to fail (e.g.,
failed cell check) before an error is raised.

• restart_replicas = (Boolean; default TRUE))

– If TRUE will restart all unfinished DFT calculations in /tmp .

• optimization_style = (optional; options = ("maximize","minimize"); default =
"minimize"))

– Minimize or maximize the fitness function.

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 13

• property_to_optimize = (optional; default = "energy"))

– Currently energy is the only available property to optimize.

• skip_energy_evaluations = (Boolean; default FALSE)

– This parameter may be used to skip FHI-aims energy evaluations of the gener-
ated structures (giving them an energy of 0 eV). This can be used to verify the
structure selection and generation works (e.g. on a laptop) without having to
run FHI-aims or the optimization module.

[parallel_settings]

• parallelization_method = (optional; default = serial)

– serial With this setting only one GA replica which reads and writes to the
common pool is spawned. If this setting is used no additional keywords need
to be specified in [parallel_settings] . If desired, additional simple multi-
processing can be used within the single replica (for parallel python processes
such as child creation) by setting processes_per_replica . Make sure to not
oversubscribe processes of the master node (especially log-in nodes).

– subprocess With this setting the user can spawn several replicas of the GA in
the master node (or where GAtor is running) using Python subprocessing. This
setting also requires number_of_replicas to be set.

– mpirun With this setting the user can spread several replicas of the GA across
multiple computing cores or nodes using the mpirun command. This setting re-
quires additionally setting at least one of the following: number_of_replicas ,
processes_per_replica , or nodes_per_replica . If only one of these op-
tions is specified, GAtor will automatically calculate the others based on the
available resources. If more than one of these options is specified, GAtor will
check compatibility of the parameters with the system and proceed. Below are
a few common scenarios in a sample job which has been submitted to 20 nodes
with each node having 20 processes per node.

∗ The user specifies number_of_replicas = 10 . GAtor will allocate 2 nodes
and 40 processes total for each of the 10 replicas.

∗ The user specifies number_of_replicas = 40 . GAtor will allocate 10 pro-
cesses for each of the 40 parallel replicas. This means 2 replicas will be
running per node.

∗ The user specifies number_of_replicas = 3 . GAtor will allocate 7 nodes
= 140 processes each for 2 replicas, and 6 nodes = 120 processes to 1 replica.

∗ The user specifies processes_per_replica = 10 . GAtor will spawn 40
replicas (with 2 replicas assigned to each node) with 10 processes per replica.

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 14

∗ The user specifies processes_per_replica = 30 . GAtor will spawn 10
replicas, each assigned 2 nodes, but each replica only being assigned 30
processes each (used e.g. for memory requirements). User has to spec-
ify additional_arguments in order for the 30 processes to be evenly dis-
tributed across the 2 nodes (e.g. -rr for round-robin).

∗ The user specifies processes_per_replica = 6 . GAtor will spawn 60
replicas, assign 3 replicas to each node, and allocate 6 processes to each
replica.

∗ The user specifies nodes_per_replica = 4 . GAtor will spawn 5 repli-
cas,and allocate 4 nodes (80 processes) to each replica.

∗ The user specifies processes_per_replica = 20 and nodes_per_replica
= 2 . GAtor will spawn 10 replicas, each allocated 2 nodes with 20 processes
total. The user has to specify additional_arguments (e.g., -rr for round-
robin) in order for the 20 processes to be evenly distributed across the 2
nodes.

∗ The user specifies number_of_replicas = 5 and nodes_per_replica = 2 .
GAtor will spawn 5 replicas, each allocated 2 nodes and 40 processes total.

∗ The user specifies number_of_replicas = 20 and nodes_per_replica = 1
and processes_per_replica = 15 . GAtor will spawn 20 replicas, each on
1 node with 15 processes.

– If ValueError is raised when using mpirun for a job submitted to, e.g., 20 nodes
with 20 processes per node, it is possibly caused by scenarios similar to the
following:

∗ The user specified number_of_replicas = 10 and nodes_per_replica > 2 .
GAtor will raise a ValueError for oversubscription of nodes.

∗ The user specified number_of_replicas = 10 and processes_per_replica
> 40 . GAtor will raise a ValueError for oversubscription of processes.

– srun With this setting the user can spread several replicas of the GA across
multiple computing cores or nodes using the srun command. The same paral-
lelization procedure is used as with the setting mpirun . See the description
for mpirun for parameters requirements and how nodes and processes are dis-
tributed to each replica.

– mira Special implementation for ALCF’s IBM BG/Q cluster Mira. Required
additional parameter: nodes_per_replica . Additional Python instances of
GAtor will be spawned through subprocess on the front-end nodes. The blocks
and corners in the back-end nodes are automatically assigned to each replica.
Each replica can be assigned more front-end processes by the

– processes_per_replica parameter.
– cetus Special implementation for ALCF’s IBM BG/Q testing cluster Cetus.

Required additional parameter: nodes_per_replica . See the setting mira
for further details. Different from the mira setting in that by default, blocks of
128 nodes are created, instead of 512.

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 15

• python_command (optional; default: python)

– The command used to call Python. This parameter can be set to call an alter-
native version of Python.

• number_of_replicas

– Required in "subprocess" parallelization mode; optional in "mpirun" and "srun";
ignored in "mira" and "cetus"

– Number of parallel replicas running the GA.

• processes_per_replica (optional)

– Number of processes allocated to each replica.
– In "subprocess", "mira" or "cetus" parallelization modes, defaults to 1.
– In "mpirun" and "srun" modes, defaults to be calculated according to other spec-

ified parameters. (See description above about the mpirun mode).

• processes_per_node (optional)

– A further constraint on the size of a multiprocessing pool of workers that each
replica can spawn. Useful when replicas control more than 1 node to constrain
the amount of workers spawned on the main node. The smaller between codepro-
cesses_per_replica and processes_per_node determines the size of the multi-
processes.pool.

– Honored only in "mpirun" and "srun" parallelization modes.
– Defaults to the value obtained through mpirun a Python test code on a node.

• allocated_nodes (optional)

– Nodes allocated for this replica. While additional replicas are spawned, this value
is set internally to allocate nodes to each replica.

– Honored only in "mpirun" and "srun" parallelization mode
– Defaults to the returned value of the function, parallel_run.get_all_hosts().

• replica_name (optional; default: "master"):

– Name of the currently running process.
– A random replica name is assigned while internally spawning replicas, or when

the main GA processes begin with this parameter still being the default "master"
(to avoid conflict of names).

• im_not_master_replica (optional; Boolean):

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 16

– If present and set to TRUE, suppresses all initialization information printed to
time log.
Here are a few parameters specifically set for the implementation on system using
the srun command. Note that overcommitting memory resources will lead to
job unable to run. To successfully run on system with srun, make sure to allocate
the necessary general resources in the submission file.

• srun_max_runtime :

– Maximum run time in seconds before the master process kills the job

• srun_gator_memory (optional; default = 2048):

– Memory (in MB) devoted to the GAtor python processes spwaned in a different
node.

• srun_memory_per_core (optional; default = 1024):

– Memory per core (in MB) devoted to additional srun processes (e.g., for FHI-aims
calculations).

• srun_command_file (optional; default = ./srun_calls.info)

– The path to the file where each replica sends an srun call’s command to be
picked up by the master thread that spawned all the replicas. This is necessary
because srun does not allow nested calls.

• srun_submitted_file (optional; default = ./srun_submitted.info):

– The path to the file where the internal job id of srun calls that are picked up by
master process and executed is recorded

• srun_completed_file (optional; default = ./srun_completed.info)

– The path where completed commands are sent to notify replicas to pick up
results.

• srun_gres_name (optional; default = "craynetwork"):

– Name to the generic resource to that serves as the first field in the argument
–gres for an srun command. Make sure to configure such resources in the
original submission file.
Here are a few parameters specifically set for the implementation on IBM’s BG/Q
system with the runjob command:

• bgq_block_size (optional):

– Number of nodes per booted block
– Defaults to 512 for mira mode, 128 for cetus mode.

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 17

• runjob_processes_per_node (optional; default: 16):

– Number of processes per node. Should be set to the number of cores per node.

• runjob_block (optional):

– For internal distribution of nodes only. The block that is assigned to the replica.

• runjob_corner (optional):

– For internal distribution of nodes only. The corner that is assigned to the replica.

• runjob_shape (optional):

– For internal distribution of nodes only. The shape of the corner that is assigned
to the replica.

[FHI-aims]

• path_to_aims_executable = (required; /path/to/aims.x)

– Path to FHi-aims executable being used for energy evaluations and/or structural
relaxations.

• execute_command = (required; mpirun , srun , runjob , or shell).

– Command to run the FHI-aims binary. The shell command should be used when
calling a serial version of aims via /path/to/aims.x. Note that if execute_command = shell ,
then additional_arguments will not be appended to the execute command.

• additional_arguments= (optional; not valid if execute_command = shell)

– A Python-evaluable list of strings to append as additional arguments used in
the subprocess.Popen call of the FHi-aims binary. For example, set this to
["-rr"] to enable round-robin spawning method in mpirun. Or set this to ["–
envs","OMP_NUM_THREADS=4"] to allow the runjob command to alter the
environmental variable, OMP_NUM_THREADS. Note that the nodes and pro-
cesses information are automatically included in the argument list via keywords
set in parallel_settings .

• control_in_directory = (required; /path/to/control_directory)

– Folder name in current directory that holds the control.in files used within GAtor.

• control_in_filelist = (required; control.in.1 control.in2 ...)

– File names of control.in files (in control_in_directory) used within GAtor
for successive evaluations of FHI-aims. These can be named arbitrarily in the
control_in_directory . e.g. One can perform single point calculations with
control.in.1 and full relaxations with control.in.2.

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 18

• absolute_thresholds= (optional; energy1 energy2 ...)

– List of highest total energies (in eV) allowed for a structure to to be deemed
as acceptable for each level of control_in_filelist . Must match length of
control_in_filelist . For example, if one does not want to allow into the com-
mon pool structures with a single point energy higher than -45,000 eV or a fully-
relaxed energy higher than -45,575 eV, then absolute_thresholds= -45000 -45575 .

• relative_energy_thresholds= (optional; rel_energy1 rel_energy2 ...)

– Energy (in eV) allowed for a structure to to be deemed as acceptable for each
level of control_in_filelist , relative to the current running global minimum.
Must match length of control_in_filelist . For example, if one does not want
to allow into the common pool structures with a single point energy 5 eV higher
than minimum energy in the pool or a fully-relaxed energy higher than 3 eV than
the minimum energy in the pool, then relative_thresholds= 5 3 .

• relative_energy_thresholds= (optional; rel_energy1 rel_energy2 ...)

– Energy (in eV) allowed for a structure to to be deemed as acceptable for each
level of control_in_filelist , relative to the current running global minimum.
Must match length of control_in_filelist . For example, if one does not want
to allow into the common pool structures with a single point energy 5 eV higher
than minimum energy in the pool or a fully-relaxed energy higher than 3 eV than
the minimum energy in the pool, then relative_thresholds= 5 3 .

• reject_if_worse_energy = (optional Boolean list; e.g. TRUE TRUE)

– If present, rejects structures from FHI-evaluations (defined in control_in_filelist)
if their energy is worse than the worst structure currently in the initial pool.

• monitor_execution = (optional Boolean; default = TRUE)

– If present, enables monitoring of the FHI-aims binary call spawned through
Python’s subprocess.Popen module. The monitoring involves: (1) Confirma-
tion of successful job launch, and (2) prevention of job being hung. A job is
given 10 attempts to launch before being determined as failed.

• save_failed_calc (optional; Boolean)

– If set to TRUE , entire failed FHI-aims calculation folders will be saved to (./tm-
p/save_calc_failed).

• save_aims_output (optional Boolean; default = FALSE)

– If set to TRUE , full FHI-aims local optimization outputs will be saved to each
structures directory in /structures/<stoic>/0/,<ID>, relaxation_data . As
this can take up a lot of storage, also see save_relaxation_data as an alter-
native for saving certain information from the output.

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 19

• save_successful_calc (optional Boolean; default = TRUE)

– If set to TRUE , data extracted from the FHI-aims local optimization outputs will
be saved to each structures directory in /structures/<stoic>/0/,<ID>, relaxation_data .
See save_relaxation_data for data that can be parsed and stored. Otherwise
necessary information such as a structures energy and geometry are saved from
FHI-aims’ outputs before the output files are discarded.

• save_relaxation_data (optional Boolean; default = all keywords below.)

– Keywords for data which is stored from FHI-aims local optimization runs. The
default keywords are: cartesian_atomic_coordinates Total_energy
vdW_energy_correction Total_atomic_forces Hirshfeld_volume lattice_vector
MBD_at_rsSCS_energy and Maximum_force_component after_each_convergence_cycle .
The user can select all or any of these keywords to save data from each FHI-
aims SCF relaxation step. This data is stored in each structures directory in
/structures/<stoic>/0/,<ID>, relaxation_data in JSON format.

• update_poll_intervals = (optional if monitor_execution = TRUE ; time; default
= 60 seconds per control file)

– Length of time in seconds to sleep between two checks on the FHI-aims out-
put file. An FHI-aims job must output something within the time period of
update_poll_intervals * update_poll_times ; otherwise, the job is deter-
mined to be hung. Must match the length of control_in_filelist .

• update_poll_times = (optional if monitor_execution = TRUE ; integer; default
= 10 per control file)

– Number of times the FHI-aims output file is polled without new updates be-
fore determining that the FHI-aims job has hung. Must match the length of
control_in_filelist .

[initial_pool]

• user_structures_dir = (required; /path/to/user_defined_initial_pool)

– Path to the user-defined initial pool, as generated by Genarris.

• stored_energy_name = (required if not stored as “energy"

– This is the name of the energy stored in the ’properties’ of the JSON input files
if set as something other than ’energy’. This energy should be at the same level
of theory as the last control file listed in [control]/control_in_filelist .

• duplicate_check = (optional; Boolean; default= TRUE)

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 20

– If present, will perform a duplicate check on the initial pool of structures by
using Pymatgen’s StructureMatcher class. The tolerances used for the duplicate
check will be the same as those set in [post_relaxation_comparison] or set
to the default values.

[selection]

This section details the parameters that have to do with the chosen selection module.

• fitness_function = (optional; default = standard_energy)

– If the user wishes to use the energy based fitness function, standard_energy
is set by default. If one wants to use the cluster-based fitness function user
standard_cluster and the corresponding keywords in the [cluster] section.

• tournament_size (required if [module]/selection_module = tournament_selection)

– This integer controls the size of the tournament when using tournament selection.
Make sure this tournament size is less than the initial pool. For an initial pool
with 50 structures typically this is set to 10-20.

• select_in_cluster (Boolean; optional if [module]/selection_module = tournament_selection ;
default= FALSE)

– If TRUE , will force all selected structure to have the same cluster label as winner
of tournament. First the runner up is checked if it has the same cluster label
as the winner. If not, another structure with the same group outside of the
tournament is selected. If the cluster size of the winner is 1 then the runner up
will be selected a the second parent no matter what its cluster label is.

• fitness_reversal_probability = (optional; default = 0.0)

– The user may set this parameter to be between 0.0 and 1.0 to allow a probability
of the fitness function being reversed when selecting parents. This may create
better diversity in the pools to allow an occasional unfit structure to be selected.

• percent_best_structs_to_select (optional; default = 100)

– The user may set this parameter if they wish to bias selection to only a certain
percentage of top fitness structures.

[pre_relaxation_comparison]

This section sets the tolerances of Pymatgen’s StructureMatcher class for pre relaxation
comparison of a generated structure. For more detailed info on these parameters see the
Pymatgen documentation.

• ltol (optional; default = 0.2)

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 21

– Lattice parameter length tolerance to deem structure as duplicate.

• stol (optional; default = 0.4)

– Atomic site tolerance (RMS) to deem structure as duplicate.

• angle_tol (optional; default = 3)

– Lattice angle tolerance (in degrees) to deem structure as duplicate.

• scale_vol (optional Boolean; default = FALSE)

– If TRUE will scale structures to equivalent volumes before comparison.

[post_relaxation_comparison]

This section sets the tolerances of Pymatgen’s StructureMatcher class for post relaxation
comparison of a generated structure. For more detailed info on these parameters see the
Pymatgen documentation.

• ltol (optional; default = 0.2)

– Lattice parameter length tolerance to deem structure as duplicate.

• stol (optional; default = 0.3)

– Atomic site tolerance (RMS) to deem structure as duplicate.

• angle_tol (optional; default = 2.5)

– Lattice angle tolerance (in degrees) to deem structure as duplicate.

• scale_vol (optional Boolean; default = FALSE)

– If TRUE will scale structures to equivalent volumes before comparison.

[cell_check_settings]

• full_atomic_distance_check (optional; default= 0.211672 Angstrom)

– Enforces a minimum distance between all pairs of atoms in the system. The
default value 0.211672 Å is the equivalent of 0.4 bohr, which is the minimum
distance enforced by FHI-aims.

• interatomic_distance_check = (optional; default= 1 Angstrom)

– If present, enforces a minimum distance for atom pairs from different molecules.
This value should usually be set larger than full_atomic_distance_check to en-
force a larger distance between atoms from different molecules.

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 22

• COM_distance_check = (optional; float)

– If present, enables the COM distance check, which enforces minimum distance
between the center of mass of different molecules.

• specific_radius_proportion = (optional; default=0.65)

– A closeness check for potential structures where each atom is assigned a specific
radius (by default, their van der Waals radii). In this check, two atoms from
different molecules need to be at least a certain proportion (specified by this
parameter, which is often shortened as sr) of the sum of their specific radii
apart. E.g. the van der Waals radius of carbon is 1.70 Å, nitrogen’s is 1.55 Å;
thus if sr=0.75, then any pair of intermolecular C-N contact must be at least
(1.70+1.55)*0.75=2.44 Å apart.

• target_volume = (optional; float)

– If present, enables volume checks on generated structures. Enforces the volume
of a newly generated structure to be within target_volume*volume_lower_ratio
- target_volume*volume_upper_ratio.

• volume_upper_ratio = (optional; float)

– The upper ratio that defines the lower bound of the volume of a newly generated
structure when times by the target_volume .

• volume_lower_ratio (optional; float)

– The lower ratio that defines the lower bound of the volume of a newly generated
structure when times by the target_volume .

• lattice_vector_check (optional Boolean; default = FALSE)

– If present will conduct checks on the generated structures lattice parameters as
detailed in the next four keywords.

• lattice_vector_lower_ratio (optional; float)

– If present along with lattice_vector_check=TRUE will only allow structures
with lattice parameters greater than lattice_vector_lower_ratio*V 1/3 where V
is the structures unit cell volume.

• lattice_vector_upper_ratio (optional; float)

– If present along with lattice_vector_check=TRUE will only allow structures
with lattice parameters less than lattice_vector_upper_ratio*V 1/3 where V is
the structures unit cell volume.

• lattice_vector_lower_bound (optional; float)

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 23

– If present along with lattice_vector_check=TRUE will reject structures with
a given lattice parameters smaller than this allowed value (in Angstrom).

• lattice_vector_upper_bound (optional; float)

– If present along with lattice_vector_check=TRUE will reject structures with
a given lattice parameters greater than this allowed value (in Angstrom).

[crossover]

This section details the various parameters associated with crossover.

• crossover_probability (optional; default = 0.75)

– This parameter controls the probability of crossover (versus mutation) for a child
structure. If set to 0.75 the child has a 75% chance of undergoing crossover, and
a 25% chance of undergoing mutation. A separate parameter is not needed for
mutation. If one wishes to fo 100% mutation then set this parameter to 0.0.

The following set of keywords have to with symmetric crossover and are relevant when
[modules]/crossover_module=symmetric_crossover and one wants to set them to other
values than their default. The term here "seed molecules," means the symmetrically inde-
pendent molecules (asymmetric unit) within a structure. The symmetric crossover module
takes the 1st selected structure as the reference parent and conducts crossover that blend-
s/swaps certain features of the 1st structure with/by that of the 2nd.

• swap_sym_prob (optional; default = 0.50)

– The probability of the symmetry operation of the 2nd structure to be applied
to the 1st. In this case, the seed molecules of the 1st structure become those
closest, in terms of absolute COM coordinates, to the seed molecules of the 2nd
structure.

• swap_sym_tol (optional; default = 0.01)

– Tolerance for determining whether the 2nd structure’s symmetry operations are
compatible with the 1st structure’s lattice vectors.

• blend_lat_prob (optional; default = 0.50)

– The probability for the lattice vectors to be blended during crossover. If without
blending, the vectors will be taken straight from the 1st selected structure.

• blend_lat_tol (optional; default = 0.01)

– Tolerance for determining whether the blended lattices are compatible with the
symmetry operations.

• blend_lat_cent (optional; default = 0.50)

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 24

– The center of the Gaussian sampling for the blending parameter, b. Let L1 be
the lattice matrix of the first structure, L2 be that for the second. Then the
blended lattice matrix will be b · L2 + (1 − b) · L1. Therefore, b = 0 takes the
unchanged lattice of first structure. b = 1 takes the unchanged lattice of second
structure.

• blend_lat_std (optional; default = 0.25)

– The standard deviation for the Gaussian sampling of the blending parameter.

• blend_lat_ext (optional; Boolean)

– If set to TRUE, then the blending parameter can be smaller than 0 or greater
than 1.

• blend_mol_COM_prob (optional; default = 0.50)

– The probability for the COM of the molecules to be blended during a crossover.
During the blending process, each "seed molecule" in the 1st structure will be
paired up with a closest neighbor in the 2nd structure, in terms of absolute COM
coordinates. If without blending, the absolute COM coordinates will be taken
from the 1st selected structure.

• blend_mol_COM_cent (optional; default = 0.50)

– The center of the Gaussian sampling for the blending parameter, b. Let c1 be
the COM of the seed molecule. Let c2 be the COM of the paired molecule. Then
the COM of the seed molecule will be moved to b · c2 + (1 − b) · c1. Thus, b = 0
takes the unchanged COM positions of the seed molecule in the first structure.
b = 1 takes that of the second structure. If there are multiple seed molecules, b
is generated seperately for each blending.

• blend_mol_COM_std (optional; default = 0.25)

– The standard deviation for the Gaussian sampling of the blending parameter.

• blend_mol_COM_ext (optional; Boolean)

– If set to TRUE, then the blending parameter can be smaller than 0 or greater
than 1.

• swap_mol_geo_prob (optional; default = 0.50)

– The probability for the molecule geometry of the 2nd structure to be swapped
into the 1st. The final orientation will be selected from 20 random orientations
that have the least coordinate residual from the original geometry in the 1st
structure.

• swap_mol_geo_tol (optional; default = 3.0)

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 25

– The tolerance on coordinate residual in determining whether two molecule con-
formations are the same. If yes, then the geometry will not be swapped. If all
pairs of molecules are the same, then this operation will be ruled invalid.

• swap_mol_geo_orient_attempts (optiona; default = 100)

– Number of attempts to randomly orient the swapped geometry. The final orien-
tation is selected to be the orientation that has the least coordinate difference
with the original molecule.

• blend_mol_orien_prob (optional; default = 0.50)

– The probability for the orientation of the molecules to be blended during a
crossover. During the blending process, each "seed molecule" in the 1st struc-
ture will be paired up with a closest neighbor in the 2nd structure, in terms of
absolute COM coordinates.

– If the paired up molecule has different geometry than the seed molecule (see pa-
rameter blend_mol_orien_tol), then blind blending will be pursued. a number
of random rotations (blend_mol_orien_orient_attempts) will be applied and
the new orientation with the minimum average coordinate difference from the
two original molecules will be selected. The average is weighted by the blending
parameter b (the coordinate difference from the paired molecule gets weighted
as b, while that from the seed molecule gets 1 − b).

– The blind blending has a probability specified by blend_mol_orien_ref_prob
to allow exploration of reflection after applying random rotations. If the ex-
ploration is pursued, half of the random rotations will be followed by a mirror
reflection across z axis.

– If the paired up molecule has the same geometry as the seed molecule, then
the blending will be based on the calculated mapping information from one to
the other. The mapping information gives whether or not a mirror reflection
is involved, and a rotation in terms of an axis and an angle in degrees. If the
mapping does not involve a mirror reflection, then a portion (b) of the rotation
will be applied to the seed molecule as the final rotation.

– If the mapping involves a mirror reflection, then a mirror reflection is applied
with a probability given by blend_mol_orien_ref_prob . If the mirror reflec-
tion is not applied, then blind blending will be pursued. If it is applied, first the
orientation of the reflected molecule that has the smallest coordinate differences
from the original will be found (with blend_mol_orien_orient_attempt ran-
dom rotation attempts). Then the mapping information will be recalculated. A
portion (b) of the rotation will be applied to the reflected and readjusted molecule
geometry as the final orientation. Note that it is likely for the mapping calcu-
lation to yield a larger tolerance and thus consider the molecules to be different
after reflection is applied. In that case, blind blending will be pursued.

• blend_mol_orien_cent (optional; default = 0.50)

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 26

– The center of the Gaussian sampling for the blending parameter, b. See descrip-
tion above for parameter blend_mol_orien_prob for how b is used.

• blend_mol_orien_std (optional; default = 0.25)

– The standard deviation for the Gaussian sampling of the blending parameter, b.

• blend_mol_orien_ext (optional; Boolean)

– If set to TRUE, then the blending parameter b can be smaller than 0 or greater
than 1.

• blend_mol_orien_tol (optional; default = 3.0)

– The coordinate difference tolerance in determining whether the seed molecule has
the same geometry as the paired molecule. See description above for parameter
blend_mol_orien_prob for how this affects the procedure.

• blend_mol_orien_ref_prob (optional; default = 0.5)

– The probability for mirror reflection to be allowed in the final orientation. See
description above for parameter blend_mol_orien_prob for the usage of this
parameter.

• blend_mol_orien_orient_attempts (optional; default = 100)

– The number of attempts to randomly orient a molecule. See description above
for parameter blend_mol_orien_prob for the usage of this parameter.

• allow_no_crossover (optional; Boolean)

– If set to TRUE, then a crossover attempt that did not invoke any of the above
listed operations will be allowed. Otherwise, a while loop will be used until 1
attempt uses any of the operations above.

[mutation]

• double_mutate_prob = (optional; default=0.05)

– A user may set this parameter to allow double mutations on crossover struc-
tures. If set, the probability of a structure undergoing double mutation is
double_mutate_prob *(1- crossover_probability)

• stand_dev_trans = (optional; default = 3.0 A)

– Sets the standard deviation of the random translation mutations to the COM of
the molecules in the cell. The translations are randomly picked from a gaussian
distribution of this width.

• stand_dev_rot = (optional; default = 30 degrees)

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 27

– Sets the standard deviation of random rotation mutations to the COM of the
molecules in the cell (euler angles).

• stand_dev_strain = (optional; default = 0.3)

– This parameter sets the standard deviation of mutations which involve strain
(using a generic strain tensor) on the lattice of the child structure. It’s a propor-
tional parameter so, e.g., (default stand_dev_strain = 0.3 so for a strain along
only the x component of a lattice e.g. Axstrain = Ax + (0.3 ∗ Ax)).

• stand_dev_cell_angle = (optional; default = 20 degrees)

– This parameter controls the standard deviation of how much a single lattice
parameter angle may change when applying a type of strain mutation where
only a lattice parameter angle is changed (and the COM of the molecules are
moved accordingly).

• specific_mutations = (optional; default = All parameters below)

– If the user only wants to implement *specific* mutations for a given GA they
may list them here seperated by spaces. The available options correspond to
distinct mutation procedures.

– The keywords corresponding to distinct mutation operations are listed below.
Rand_strain Apply random strains to the unit cell
Sym_strain Apply random strains to the unit cell symmetrically
Vol_strain Apply random strains to the unit cell which preserve the parent
structures unit cell volume.
Angle_strain Apply random strains to the unit cell that only change the a sin-
gle lattice parameter angle (See stand_dev_cell_angle).
Rand_trans Apply random translations to the COM of molecules in the unit
cell in Cartesian space.
Frame_trans Apply random translations to the COM of molecules in the unit
cell in their own inertial reference frame.
Rand_rot Apply random rotations molecules in the unit cell in Cartesian space.
Frame_rot Apply random rotations molecules in the unit cell in their own in-
ertial reference frame.
Permute_mol Randomly swap the COM of randomly selected molecules in the
unit cell.
Permute_ref Randomly swap the COM of molecules of randomly selected in
the unit cell and then apply a reflection through each molecules COM about the
x y or z directions.
Permute_rot Randomly swap the COM of molecules of randomly selected in
the unit cell and then apply a random rotation.

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 28

[clustering]

To use a cluster-based fitness function, make sure [selection]/fitness_function=standard_cluster
is set. To further specify which clustering algorithm and feature vector to use, specify the
appropriate keywords in this section.

• clustering_algorithm = (optional)

– The clustering algorithm to be used with feature_vector . Currently imple-
mented options include AffinityPropagation (recommended) and Kmeans .

• feature_vector = (optional)

– The key for the feature vector which is being used for clustering. Currently im-
plemented options include RDF_vector , RCD_vector , and Lat_vol_vector .

• interatomic_pairs = (required when feature_vector = RDF_vector)

– Pairs of element types used to compute interatomic distances for the RDF vector.
The elements are seperated by spaces. So e.g. interatomic_pairs = C N S S
would compute and bin the interatomic distances for C-N and S-S contacts.

• interatomic_distance_range = (required when feature_vector = RDF_vector ;
default= 1 8 corresponding to 1-8 Angstrom)

– The interatomic distance range sampled when computing the RDF vector of
interatomic contacts. Two integers must be present separated by a space.

• interatomic_distance_increment = (required when feature_vector = RDF_vector ;
default 1 Angstrom)

– The interatomic distance interval within the interatomic_distance_range
used for creating the RDF vector. If set to 1, then interatomic_distance_range
will be binned in intervals of 1 Angstrom for the construction of the RDF vector.

• rcd_axes_indices = (required when feature_vector = RCD_vector)

– The indices of molecules used for the construction of a molecules reference frame/
basis vectors for the RCD vector. Only 4 indices have to be provided. For exam-
ple, if rcd_axes_indices = 6 9 7 10 then one basis vector will be constructed
which points from atom 6 to 9, another will be constructed which points from
atom 7 to 10, and the third will be constructed using gram-schmidt (all vectors
are orthogonalized by gram-schmidt).

• rcd_close_picks = (integer; required when feature_vector = RCD_vector)

– The number of molecules surrounding the reference molecule in the RCD calcu-
lation. Default = 8 molecules for 4 molecule per cell crystals.

CHAPTER 2. FULL CONFIGURATION FILE PARAMETERS 29

• num_clusters = (integer; required when clustering_algorithm=Kmeans)

– The number of clusters for the Kmeans algorithm. AffinityPropagation doesn’t
require this parameter to be set, as it find the clusters in the data inherently.

Chapter 3

Running GAtor in Parallel on
Supercomputing Resources

Because GAtor’s parallelization is different for different computer architectures and job
schedulers, this chapter details how GAtor can be run on different machines at the Argonne
Leadership and Computing Facility (ALCF) and the National Energy Research Scientific
Computing Center (NERSC).

3.1 Running GAtor at ALCF

3.1.1 Mira

Below is an eample submission script, Submit_Mira.sh , which runs GAtor using 512 nodes,
a maximum wall-time of 60 minutes, and charging the job to MyProject :

#!/bin/bash
#COBALT -t 60
#COBALT -n 512
#COBALT -A MIO_HP_2
#COBALT --disable_preboot

python ../ src/GAtor_master.py ui.conf

The –-disable_preboot flag must be added to the qsub submission script. The fol-
lowing command submits the script Submit_Mira.sh to Mira’s Cobalt job scheduler:

qsub Submit_Mira.sh

Below is an example of the [parallel settings] and [FHI-aims] module settings
in that are required for runing GAtor on Mira:

[parallel_settings]
parallelization_method = mira

30

CHAPTER 3. RUNNING GATOR IN PARALLEL ON SUPERCOMPUTING RESOURCES31

nodes_per_replica = 128
processes_per_replica = 4
runjob_processes_per_node = 16
python_command = python

[FHI -aims]
execute_command = runjob

The parameter parallelization_method = mira requires the additional parameter
nodes_per_replica . The number of GAtor replicas is then automatically calculated by
dividing the number of nodes specified in the submission script by the number
nodes_per_replica . For this example, GAtor would spawn 4 instances. Python replicas
of GAtor will be spawned through subprocess on the front-end nodes. The blocks and
corners in the back-end nodes are automatically assigned to each replica. Each replica can
be assigned more front-end processes by the processes_per_replica parameter.

The runjob command tells Mira to execute the FHI-aims calculation on the back-
end nodes. runjob_processes_per_node is set to 16 because each Mira nodes has 16
processer leaving 1 GB of memory for each process. However, if memory becomes an issue,
the number of processes per node can be decreased.

Note: Access to Mira comes with access to Cetus. The primary role of Cetus is to
run small jobs and debug problems that occurred on Mira. Conviently, Cetus shares the
same software environment and file systems as Mira. To run GAtor on Cetus, change
parallelization_method = cetus . Cetus has a maximum wall time of 60 minutes and
small jobs (128 nodes) tend to get through almost instantly. You can check the availability
of Cetus (and all ALCF resources) at https://status.alcf.anl.gov/cetus/activity.

3.1.2 Theta

Below is an example submission script, Submit_Theta.sh , to submit GAtor to Theta’s
default queue using 8 nodes, a maximum wall-time of 30 minutes, and charging the project
MyProject :

#!/bin/bash
#COBALT -n 8
#COBALT -t 30
#COBALT -q default
#COBALT -A MyProject

python ../ src/GAtor_master.py ui.conf

The following command submits the script Submit_Theta.sh to Theta’s job scheduler
Cobalt:

qsub Submit_Theta.sh

The default submission queue is for for the entire Theta system. The default queue

https://status.alcf.anl.gov/cetus/activity

CHAPTER 3. RUNNING GATOR IN PARALLEL ON SUPERCOMPUTING RESOURCES32

has a minimum job time of thirty (00:30:00) minutes and a minimum allocation of 8 nodes.
There are two 16-node debugging queues on Theta with maximum wall-clock times of 1:00:00
(1 hour); debug-cache-quad and debug-flat-quad .

When a batch script is submitted on Theta, it is executed on the Machine Oriented Mini-
server (MOM) nodes. Once on the MOM node, the aprun command is used to run exe-
cutables on the compute nodes. The following is an example of the [parallel settings]

and [FHI-aims] module settings in the GAtor ui.conf file for running on Theta:

[parallel_settings]
parallelization_method = subprocess
number_of_replicas = 8
processes_per_replica = 1
aims_processes_per_replica = 64

[FHI -aims]
execute_command = aprun

The subprocess parallelization setting will spawn number_of_replicas = 8 (python)
GAtor instances on the MOM nodes. Simple multiprocessing can be used within the
single replicas (for parallel python processes such as child creation) by setting the value
of processes_per_replica . Important: Since the MOM nodes perform many differ-
ent tasks for Theta, do not set number_of_replicas * processes_per_replica to be
greater than 32 or you risk crashing these nodes. The Theta compute nodes each have 64
cores so the number of parallel processes used to run FHI-aims per GAtor replica is set to
64 processes using the aims_processes_per_replica setting. The execute_command of
FHI-aims for Theta is aprun so that energy evaluations and structure relaxations will be
performed on the compute nodes.

3.2 Running GAtor at NERSC

3.2.1 Edison

Below is an example submission script, Submit_Edison.sh , to submit GAtor to Edison’s
debug queue using 4 nodes, a maximum wall-time of 30 minutes:

#!/bin/bash
#SBATCH --qos=debug
#SBATCH --time =00:30:00
#SBATCH --nodes =4
#SBATCH --ntasks -per -node =24
#SBATCH --gres=craynetwork :2

module load python
export OMP_NUM_THREADS =1

CHAPTER 3. RUNNING GATOR IN PARALLEL ON SUPERCOMPUTING RESOURCES33

python ../ src/GAtor_master.py ui.conf

The following command submits the script Submit_Edison.sh to Edison’s SLURM job
scheduler (to the debuq queue in the example script):

sbatch Submit_Edison.sh

On Edison, the GA replica python processes run in the backend nodes. The srun
command is used both to spawn the python processes and to launch FHI-aims on the
backend.

The following is an example of the [parallel settings] and [FHI-aims] module
settings in the GAtor ui.conf file for running on Edison:

[parallel_settings]
parallelization_method = srun
number_of_replicas = 2
nodes_per_replica = 2
processes_per_replica = 4
aims_processes_per_replica = 40

[FHI -aims]
execute_command = srun
additional_arguments = ["-O"]

The srun parallelization setting will spawn number_of_replicas = 2 GAtor instances
on the backend nodes. Additional multiprocessesing can be used within the single replicas
(for parallel python processes such as child creation) by setting the value of
processes_per_replica . In the example script, 2 GA replicas run on 2 nodes each (for
a total of 4 nodes allocated for the job). Each replica has 4 python processes for child
generation and 40 aims processes for energy evaluations and local relaxations.

	Basic Installation and Tutorial
	Introduction
	Installation Requirements for GAtor
	Structure of the Code
	Running GAtor
	Basic Tutorial
	The ui.conf file
	Basic ui.conf file settings
	Filling the initial pool
	Running the GA
	Individual and Combined Replica Outputs
	GAtor time log
	Structures directory
	Temp Directories for FHI-aims evaluations
	Energy Hierarchy
	Duplicates
	Finishing the GA
	Reseting the Calculation Folder

	Full Configuration File Parameters
	Running GAtor in Parallel on Supercomputing Resources
	Running GAtor at ALCF
	Mira
	Theta

	Running GAtor at NERSC
	Edison

